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Restoring site percolation on a damaged square lattice with the nearest neighbor �N2� is investigated using
two different strategies. In the first one, a density y of new sites are created on the empty sites with longer
range links, either next-nearest neighbor �N3� or next-next-nearest neighbor �N4�, but without N2. In the second
one, new longer range links N3 or N4 are added to N2 but only for a fraction v of the remaining nondestroyed
sites. Starting at pc�N2�, with a density x of randomly destroyed sites, the values of yc and vc, which restore site
percolation, are calculated for both strategies with, respectively, N3 and N4 using Monte Carlo simulations.
Results are obtained for the whole range 0�x� pc�N2�.
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I. INTRODUCTION

For several decades, the calculation of percolation thresh-
olds has been an ongoing technical challenge �see �1,2� for
recent ones�. Up to now, analytical solutions have been lim-
ited to few two-dimensional lattices. However, percolation
thresholds have been estimated very accurately for an in-
creasing large number of systems using computer Monte
Carlo simulations and powerful computers �3,4�. High-
temperature series expansion have been also extensively
used �5�.

The most studied case is the hypercube due to its simple
computer representation with available numerical estimates
of percolation threshold up to 13 dimensions �3,6,7�. Some
universal formulas have also been suggested �2,8�. Percola-
tion phenomenon �3,4� is also found to occur on a large
variety of complex networks where sites are not distributed
regularly �9–11�. The resistance to intentional or random at-
tacks has been studied for these complex networks �10�, but
not for regular lattices.

In this paper we address this problem and investigate how
to restore site percolation on a square lattice with nearest-
neighbor links �N2� once a random attack has occurred. We
consider the square lattice at the percolation threshold pc
� pc�N2�, once a fraction x of the initial pc sites have been
randomly destroyed. Two strategies are suggested. In the
first, a density y of new sites are created on the empty sites
with longer range bonds, either next-nearest neighbor �N3� or
next-next-nearest neighbor �N4�. It is worth noting that these
additional sites with N3 or N4 links have no N2 links.

In the second strategy, no additional sites are created but
instead new longer range links, either N3 or N4, are added to
the N2, links but only for a fraction v of the remaining un-

damaged �pc−x� sites. Accordingly, v�pc−x� sites have N2

plus either N3 or N4 links, while �1−v��pc−x� sites have
only their initial N2 links. Figure 1 shows sites with, respec-
tively, N2, N3, N4, �N2+N3�, and �N2+N4� links on the lat-
tice.

Given a fixed density of destroyed sites x, the associated
values yc and vc, which restore site percolation, are calcu-
lated with, respectively, N3 and N4 using Monte Carlo simu-
lations. Results are obtained for the whole range 0�x� pc,
which in turn leads to new site percolation thresholds, �3
��pc−x+yc� for N3, �4��pc−x+yc� for N4, �23�vc�pc

−x� for N3, and �24�vc�pc−x� for N4. The first two are
obtained for the first strategy while the last two are for the
second strategy.

However, to allow a more simple evaluation of above
expressions we reformulate the problem as follows. Since for
each strategy we have two kinds of sites with respect to their
links, we consider instead of the above problem a square
lattice with a density � of occupied sites, of which a given
fraction q has one kind of link, the initial N2, while remain-
ing fraction �1−q� have the other kind, N3 or N4 for the first
strategy and �N2+N3� or �N2+N4� for the second one.

Then, given the mixing neighborhood parameter q, we
evaluate the threshold �c using Monte Carlo simulations.
From �c we can then go back to our former problem and
extract the values of the pairs �x ,yc� and �x ,vc�. For the first
strategy x= pc−q�c and yc= �1−q��c, while for the second
x= pc−�c and vc= �1−q�. Monte Carlo simulations are run
over the whole range 0�q�1. Associated thresholds are
presented in Fig. 2.

II. CALCULATION

To perform our calculations of percolation thresholds, we
are using the Hoshen–Kopelman algorithm �HKA� �12� from
existing computational techniques �13–15�. With HKA each
occupied site gets a label. The sites in the same cluster have
the same labels and different labels are assigned to different
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clusters, thus allowing us to recognize which sites belong to
which clusters. When different sites have different
neighbors—as presented in Fig. 3—the situation becomes
more complicated than for homogeneous case �3,16�. In Fig.
3, black site is not N2 of dark �red� one, while the dark �red�
one is N3 of the black one. Note that one may recognize
these two sites as parts of the same cluster or not, depending
on sites’ inspector intentions. To avoid such ambiguity we
classify them as the members of one common cluster when
we go in type-writer order, i.e., from top-to-bottom and from
left-to-right, but we leave them separated when we go in
reverse-type-writer order, i.e., from bottom-to-top and from
right-to-left. However, as the lattice and sites distribution is
homogeneous one can meet both these situations equally of-
ten and particular chose of any sites inspection order does
not influence the results. Technically, it is realized by consid-
ering each site as having effectively only slashed �red� “half”
of their neighborhood presented in Fig. 1. This technical
trick is used only to simplify the computational labeling of
sites and has no effect at all on the physical results.

III. RESULTS

Technically the percolation thresholds values �c are
evaluated from the crossing point of two different curves
showing both the dependence of the percolation probability
P versus the sites occupation probability p for two different
linear sizes L=100 and 500 �see Fig. 4�. The results are
averaged over Nrun=103 and 104 for L=500 and 100, respec-

tively. They are presented in Fig. 2. As a matter of fact, each
site has only “half” of their neighborhood as we have ex-
plained earlier.

For the first strategy—where new type of sites are added
with long-range links N3 or N4—the extracted corresponding
values of the pairs �x ,yc� are collected in Tables I and II and
presented in Fig. 5�a�.

For the second strategy—where additional longer-range
links N3 or N4 are added to a fraction v of the formerly
nondestroyed sites—the results are collected in Table III and
presented in Fig. 5�b�. The extracted corresponding values of
the pairs �x ,vc� are included with x23 and x24 referring to,
respectively, N3 and N4 links.

IV. DISCUSSION

Homogeneous cases q=0 and q=1 were indeed studied
recently in the context of a systematic increase of the range
of links in Ref. �18�. Similar checks for bi-colored lattices
with N2 and N3 neighborhoods were also performed in Ref.
�19�.

We note that for the site reconstruction process, at x�0 or
x� pc, the difference between originally used N2 sites and
their N3 and/or N4 substitutes vanishes.

• In the limit x→0, where damages are very scarce, the
reconstruction process is not too costly independent of what
kind of “bricks” �sites with N or N4� is used.

• On the other hand, when x→pc, the system must be
completely reconstructed starting from almost zero. Since all
of homogeneous N2, N3, and N4 lattices have the same per-

FIG. 1. �Color online� Various site neighborhoods on the square lattice: �a� N2, �b� N3, �c� N4, and examples of their combinations: �d�
N2+N3, �e� N2+N4.

FIG. 2. �Color online� The percolation threshold �c dependence
on the neighborhoods mixing parameter q. The lines are guides for
the eyes.

FIG. 3. �Color online� Are full-filled black and dark �red� sites
in one cluster? The dark �red� site has N2 while the black one has
N3. Our answer may be positive and the HKA will give such an
answer only with the probability of 50%. The answer is sites label-
ing order dependent.
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colation threshold pc�N2�= pc�N3�= pc�N4�=0.592 746 0
�17,18� the cost of reaching a new percolation threshold be-
comes again neighborhood independent.

• Note, that in both cases �N3 and N4�, there is an optimal
ratio q / �1−q� for which the percolation threshold �c is the
lowest.

• For N3 sites used for the reconstruction process �3
� pc, when 0.8�q�1, i.e., when damages are relatively
small �x�0.2�. In that case addition sites with diagonal
bonds do not help much with restoring the percolation, but
increase total sites density.

TABLE I. The fraction yc of sites with N3 which must be added
to reconstruct the percolation phenomenon—which occurs at �3

=�c�q ,N2 ,N3�—when only �pc−x� of sites with N2 is occupied.

1−q x yc �3

0.0 0.0000 0.0000 0.592

0.1 0.0574 0.0594 0.594

0.3 0.1783 0.1773 0.591

0.4 0.2404 0.2344 0.586

0.5 0.3025 0.2895 0.579

0.6 0.3640 0.3420 0.570

0.8 0.4810 0.4440 0.555

0.95 0.5645 0.5254 0.553

0.99 0.5863 0.5603 0.566

1.0 0.5920 0.5920 0.592

TABLE II. The fraction yc of sites with N4 which must be added
to reconstruct the percolation phenomenon—which occurs at �4

=�c�q ,N2 ,N4�—when only �pc−x� of sites with N2 is occupied.

1−q x yc �4

0.0 0.0000 0.0000 0.592

0.05 0.0401 0.0291 0.581

0.2 0.1512 0.1102 0.551

0.3 0.2189 0.1599 0.533

0.4 0.2812 0.2072 0.518

0.5 0.3395 0.2525 0.505

0.7 0.4456 0.3416 0.488

0.9 0.5424 0.4464 0.496

0.99 0.5866 0.5376 0.543

1.0 0.5920 0.5920 0.592

TABLE III. The fraction vc of sites with N2 which must be
enriched with N3 or N4 bonds to reconstruct the percolation
phenomenon—which occurs at, respectively, �23 or �24—when
only �pc−x� of sites with N2 were saved after attack; x23 and x24

refer to x for, respectively, N3 and N4 links.

1−q x23 �23 x24 �24 vc

0.0 0.000 0.592 0.000 0.592 0.0

0.1 0.017 0.575 0.033 0.559 0.1

0.2 0.035 0.557 0.065 0.527 0.2

0.3 0.054 0.538 0.097 0.495 0.3

0.4 0.073 0.519 0.126 0.466 0.4

0.5 0.092 0.500 0.153 0.439 0.5

0.6 0.110 0.482 0.178 0.414 0.6

0.7 0.130 0.462 0.200 0.392 0.7

0.8 0.149 0.443 0.220 0.372 0.8

0.9 0.167 0.425 0.239 0.353 0.9

1.0 0.185 0.407 0.255 0.337 1.0

FIG. 4. �Color online� The percolation probability P dependence
on the occupation probability p for different values of mixing pa-
rameter q which changes from 10% to 90% every 10% from right to
left. The N2 and �N2+N3� neighborhoods are mixed. The symbols
correspond to L=100, while lines to L=500. The crossing points
predict the percolation thresholds �23=�c�q ,N2 ,N2+N3�.

FIG. 5. �Color online� The fraction of sites which must be �a�
reoccupied �y� or �b� enriched with long-range links �v� to recover
the percolation phenomenon when the fraction x of sites with the N2

was emptied. The lines are guides for the eyes.

BRIEF REPORTS PHYSICAL REVIEW E 72, 027103 �2005�

027103-3



For the second scenario, we found a critical density of
sites xc above which site destruction is not compensable by
adding long-range bonds, even to all of remaining sites. For
x�xc the site concentration falls below the threshold pc for
the square lattice with all sites having the same mixed neigh-
borhood, for instance, N2+N3 or N2+N4 �18�. The critical
values xc�N�=�c�0,N2,N2+N�− pc are 0.185 and 0.255 for
N=N3 and N4, respectively.

For both reconstruction strategies, the percolation is re-
stored more easily if neighborhoods with larger links are
employed as presented in Fig. 5.

V. CONCLUSIONS

To conclude, in contrast to Ref. �10�, which focused on
how to destroy connectivity on a given lattice, we concen-
trate on effective reconstruction after a random destruction.
Using Monte Carlo simulations we have reported square lat-
tice site percolation thresholds �c for given neighborhoods

characterized by a mixing parameter q and various pairs of
mixed neighborhoods built from basic ones, i.e., N2, N3, and
N4. We have showed quantitatively that restoring requires
less sites to be created when longer links are employed for
site reconstruction process at intermediate range of damages.
The strategy involving bond enrichment fails if damages are
too large. The critical damages size xc depends on the perco-
lation threshold pc�N2+N�, where N is the kind of bonds
used in the enriching process.
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